Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Main subject
Language
Document Type
Year range
1.
Immunobiology ; 228(2): 152350, 2023 03.
Article in English | MEDLINE | ID: covidwho-2238431

ABSTRACT

OBJECTIVES: The study of cellular immunity to SARS-CoV-2 is crucial for evaluating the course of the COVID-19 disease and for improving vaccine development. We aimed to assess the phenotypic landscape of circulating lymphocytes and mononuclear cells in adults and children who were seropositive to SARS-CoV-2 in the past 6 months. METHODS: Blood samples (n = 350) were collected in a cross-sectional study in Dhaka, Bangladesh (Oct 2020-Feb 2021). Plasma antibody responses to SARS-CoV-2 were determined by an electrochemiluminescence immunoassay while lymphocyte and monocyte responses were assessed using flow cytometry including dimensionality reduction and clustering algorithms. RESULTS: SARS-CoV-2 seropositivity was observed in 52% of adults (18-65 years) and 56% of children (10-17 years). Seropositivity was associated with reduced CD3+T cells in both adults (beta(ß) = -2.86; 95% Confidence Interval (CI) = -5.98, 0.27) and children (ß = -8.78; 95% CI = -13.8, -3.78). The frequencies of T helper effector (CD4+TEFF) and effector memory cells (CD4+TEM) were increased in seropositive compared to seronegative children. In adults, seropositivity was associated with an elevated proportion of cytotoxic T central memory cells (CD8+TCM). Overall, diverse manifestations of immune cell dysregulations were more prominent in seropositive children compared to adults, who previously had COVID-like symptoms. These changes involved reduced frequencies of CD4+TEFF cells and CD163+CD64+ classical monocytes, but increased levels of intermediate or non-classical monocytes, as well as CD8+TEM cells in symptomatic children. CONCLUSION: Seropositive individuals in convalescence showed increased central and effector memory T cell phenotypes and pro-resolving/healing monocyte phenotypes compared to seronegative subjects. However, seropositive children with a previous history of COVID-like symptoms, displayed an ongoing innate inflammatory trait.


Subject(s)
COVID-19 , Humans , Bangladesh , SARS-CoV-2 , Cross-Sectional Studies , Leukocytes , Antibodies, Viral
2.
COVID ; 2(12):1625-1634, 2022.
Article in English | MDPI | ID: covidwho-2123540

ABSTRACT

The purpose of this study was to determine the seropositivity of circulating viral pathogens and their association with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) seropositivity. In a cross-sectional design, inhabitants (aged 10-60 years) of the slum and surrounding non-slum areas of Dhaka and Chattogram Metropolitan cities in Bangladesh were enrolled from October 2020 to February 2021. Antibodies to SARS-CoV-2, influenza B, parainfluenza, respiratory syncytial virus (RSV), human coronavirus HKU1 (HCoV-HKU1), dengue and chikungunya viruses were determined in plasma. The association of SARS-CoV-2 seropositivity with seropositivity to other viruses was assessed using the multi-variate logistic regression model. Seroprevalence of SARS-CoV-2, influenza B, RSV, dengue, chikungunya, HCoV-HKU1 and the parainfluenza virus were 68.3%, 98%, 50.0%, 16.5%, 15.5%, 3.36% and 0.0%, respectively. Individuals seropositive for RSV had lower odds (OR = 0.60;95% CI= 0.49, 0.73) of SARS-CoV-2 seropositivity compared to RSV-seronegative individuals. Conversely, higher odds of SARS-CoV-2 seropositivity were observed in participants seropositive for dengue (OR= 1.73;95% CI = 1.14, 2.66, only in slum) or chikungunya (OR = 1.48;95% CI = 1.11, 1.95) compared to their seronegative counterparts. The study findings indicated that exposure to vector-borne virus dengue or chikungunya enhance, while antibodies to respiratory virus RSV decrease, the serological response to SARS-CoV-2.

3.
Vaccines (Basel) ; 10(9)2022 Sep 08.
Article in English | MEDLINE | ID: covidwho-2010365

ABSTRACT

BACKGROUND: The adaptive immune response is a crucial component of the protective immunity against SARS-CoV-2, generated after infection or vaccination. METHODS: We studied antibody titers, neutralizing antibodies and cellular immune responses to four different COVID-19 vaccines, namely Pfizer-BioNTech, Moderna Spikevax, AstraZeneca and Sinopharm vaccines in the Bangladeshi population (n = 1780). RESULTS: mRNA vaccines Moderna (14,655 ± 11.3) and Pfizer (13,772 ± 11.5) elicited significantly higher anti-Spike (S) antibody titers compared to the Adenovector vaccine AstraZeneca (2443 ± 12.8) and inactivated vaccine Sinopharm (1150 ± 11.2). SARS-CoV-2-specific neutralizing antibodies as well as IFN-γ-secreting lymphocytes were more abundant in Pfizer and Moderna vaccine recipients compared to AstraZeneca and Sinopharm vaccine recipients. Participants previously infected with SARS-CoV-2 exhibited higher post-vaccine immune responses (S-specific and neutralizing antibodies, IFN-γ-secreting cells) compared to uninfected participants. Memory B (BMEM), total CD8+T, CD4+ central memory (CD4+CM) and T-regulatory (TREG) cells were more numerous in AstraZeneca vaccine recipients compared to other vaccine recipients. Plasmablasts, B-regulatory (BREG) and CD4+ effector (CD4+EFF) cells were more numerous in mRNA vaccine recipients. CONCLUSIONS: mRNA vaccines generated a higher antibody response, while a differential cellular response was observed for different vaccine types, suggesting that both cellular and humoral responses are important in immune monitoring of different types of vaccines.

SELECTION OF CITATIONS
SEARCH DETAIL